
Moving to React
Native for Scale
& Efficiency

How to successfully migrate your
app for streamlined development

TABLE OF CONTENTS

Maximizing Efficiency and ROI from Your Tech Investments

The React Native Advantage in Cross-Platform Development

Evaluating Native vs. Cross-Platform App Development

Decision Framework: Native App vs. Cross-Platform App

Key Benefits of Single Codebase Migrations

Evaluation Checklist: Determining the Suitability of React Native for Your Project

React Native Migration Case Study

Five Essential React Native Migration Tips & Learnings for Tech and Product Leaders

The Next Steps to Success

2

3

4

5

6

7

9

17

15

1

Maximizing Efficiency and ROI from
Your Tech Investments
As companies of all sizes seek solutions
to improve efficiency and ROI from their
tech investments, options like migrating
existing products to newer frameworks
and more efficient approaches come up
frequently. But technology migrations
can be large and complicated endeavors.
To succeed in these migrations,
companies need both a solid business
case and a clear, comprehensive
execution plan – along with the right
resources.

If “technology migrations” just made
your heart skip a beat or two, odds are
you’ve already seen just how badly
things can go in the worst-case scenario.

At Whitespectre, we see a growing
movement among companies seeking to
consolidate their native applications into

a single, more manageable codebase
framework – with React Native being the
most popular choice. This strategic shift
towards a single, unified codebase
comes with massive potential. This
single codebase approach is more than
just a trend – it's a transformative
approach.

By converging iOS and Android
development efforts, organizations can
substantially reduce double-work in
areas that overlap, as well as bring
together siloed iOS and Android teams,
saving build and maintenance costs by
as much as 30%*. This leads to
reductions in both maintenance
overheads and the costs associated with
rolling out new features.

*Merryfield case study, page 9

Like any good investment opportunity, a replatforming project has a huge upside potential
over the long term; the increased pace and efficiency of future development, the improved
skillset-resilience within the team and the automatic consistency of behavior between iOS  
and Android. To shorten the time to start realizing a return, the project to rebuild and rollout
must be well planned and executed.”

Nick Tudor
CEO, Whitespectre

2

The React Native Advantage in 
Cross-Platform Development
Since its introduction by Facebook (now
Meta Platforms) in 2015, React Native
has risen in popularity and matured into
a leading JavaScript framework to build
complex cross-platform applications that
deliver a native user experience. Using
the same building blocks as native iOS
and Android apps, React Native provides
a faster, more simplified way to get
mobile applications running on multiple
platforms, with a streamlined and
efficient development process, enabling
applications to smoothly operate across
multiple platforms.

It also provides robust and reliable tools
that allow developers to achieve the
same results with far fewer resources as
compared to their native counterparts.
This accelerates the development
timeline with significantly fewer
resource-based costs.

In recent years, React Native has grown
to support multiple platforms, fostered a
sizable, vibrant and engaged developer
community, and offers improved
performance and better developer tools.

Migrating to React Native

3

Evaluating Native
vs. Cross-Platform 
App Development
Native applications have long been
known for their higher performance and
ability to provide better, highly tailored
user experiences specific to their
respective iOS and Android platforms.
This specialization enables native apps
to leverage the full spectrum of device
capabilities and technologies, often
resulting in better application
responsiveness and user engagement.

Even so, for businesses with established
products running on applications with
native-specific features, the commitment
to native app development means a
significant investment. The need to
develop, update, and maintain separate
codebases for iOS and Android not only
escalates operational costs but also
increases the time required to deploy
features and fixes across two parallel
platforms.

As codebases are completely different
between platforms, the development
effort is doubled, as are the skills
required from the team.

4

Decision Framework: Native App 
vs. Cross-Platform App
A structured comparison supports the decision between native and cross-
platform approaches, ensuring alignment of each option with your specific
business needs, project characteristics, and overarching goal.

native app when:

Specialized Native Features are
Crucial: Your application requires
access to advanced, device-specific
functionalities or intends to
leverage the latest technology
exclusive to a platform.

High-Performance 3D Games and
Animations: You're developing
visually intensive 3D games or
applications where animation
performance is non-negotiable.

Single-Platform Utility or High-
Performance Apps: The project is
focused on delivering a high-
performance application tailored to
a specific operating system, or
when computational demands
exceed what cross-platform
technologies can efficiently handle.

cross-platform app when:

5

If your ecosystem includes web applications developed with React, opting for React Native allows for the
reuse of code components, enhancing development efficiency and consistency across platforms and the web.

Efficient Multi-Platform Release is
a Priority: You aim to launch your
mobile application across iOS and
Android simultaneously, working
within constrained timelines or
resource limitations.

Broad User Base Targeting: It's
essential to cater to both iOS and
Android users without a preference
or priority for one platform over the
other.

Speed in Development and
Maintenance is Key: Your project
benefits from quicker development
cycles and easier maintenance
updates, reducing time to market
and ongoing support costs.

Uniform Functionality Across
Platforms: The app's core functions
work universally for a seamless
user experience on all devices.  

Key Benefits of
Single Codebase
Migrations

Cost Efficiency: Transitioning to a single
codebase can significantly reduce the
long-term operational costs associated
with parallel development paths. This  
is a pivotal consideration, irrespective  
of the current phase of active
development for your app.

Simplified Implementation and
Maintenance: A unified codebase
streamlines both the implementation  
of new features and the maintenance  
of existing ones. It mitigates the risk  
of feature discrepancies between
platforms, therefore enhancing the
efficiency of technical teams and
improving the coherence of customer
service and marketing efforts.

 Regardless of how actively you’re
developing an app, maintaining a single
codebase can reduce the ongoing cost of
your project. Simplifying
implementation and maintenance for a
single common technical product will
lower likelihood for features to be out of
sync between the platforms. This will
result in efficiencies not only for the tech
team, but for customer service and
marketing as well.

6

7

Evaluation Checklist: 
Determining the Suitability of React
Native for Your Project
Migrating to a single codebase with React Native is a strategic decision that
should be made with a comprehensive understanding of your product's
specific needs, the potential for unification of the user experience, and the
scope of work involved. This approach not only enables gains in operational
efficiency, but also aligns with a vision for a more integrated and seamless
product ecosystem.

 Percentage of Native-Specific
Functionality  

Assess the extent of your app’s
reliance on native features. Is it 60%,
30%, or 10%? A higher proportion  
of native-specific functionality could
affect the potential benefits of
unifying under a single codebase.
Your return is directly proportional  
to how much you can unify the
codebase.  

How core is that native functionality
to the core value your product
delivers? The significance of these
features both now and in the
foreseeable future plays a crucial
role in this evaluation. 

 Assessing User Experience
Consistency  

If there's a variance in the user
experience across your iOS and
Android apps, determine the
feasibility and desirability of unifying
these experiences. The ability to
offer a consistent user experience
post-migration can significantly
influence the success of adopting
React Native.

Are there any additional native
features in your product’s roadmap?
Current and planned native
functionality is key when considering
how much your product would
benefit from having a single
codebase. 

Evaluation Checklist:

Acknowledge that while a unified
codebase offers many advantages,
certain platform-specific UI and UX
expectations may still need to be
met. React Native's flexibility in
customization should be considered
as part of your strategy.  

Is there a timeline you need to meet
in order to move to a smaller
consolidated team? Identify any
critical deadlines that could influence
the migration plan. The ability to
meet these deadlines while moving
towards a more streamlined team
structure is essential. 

Can you identify an approach where
you can make a gradual transition  
to a single codebase without
impacting feature releases?  
Explore the possibility of a phased
approach to migrating to a single
codebase. This could mitigate risk
and allow for continuous feature
development without significant
interruptions.

Always keep in mind that iOS and  
Android users will not expect the exact
same UI & UX in specific app interactions  
and elements, but React Native allows  
you to customize it when needed.

8

 What is the Scope of Work  
to be Undertaken?  

Clearly define whether the migration
involves transitioning from a single
platform to React Native or
consolidating two distinct apps into
one codebase. The scale of this
transition will significantly impact
your strategy.

Migrating to React Native

React Native Migration Case Study: 
Merryfield’s Successful Transition to 
a Unified Codebase
In this section, we share the story of how we unified the codebase of a 
2-year-old iOS Native app with its React Native-built Android app
counterpart.

Exponentially increasing the
app’s weekly active user count
on both platforms.

A 4.9 stars rating on iOS  
and 4.7 stars on Android

A 30% cost reduction
developing and maintaining
two apps in parallel, following
a friction-free migration.

Continued launching of new
features on both apps while
working to parity and a
seamless iOS cut-over.

Exciting new brand and retail
partnerships along with tons  
of user feedback on the
amazing impact Merryfield
brings through their platform.

project outcomes
Background: Merryfield approached us
in 2019, seeking a tech partner to help
them launch the iOS application that
would be the cornerstone of their entire
business.

Merryfield's vision was to develop a
loyalty platform for better-for-you
brands. Customers would discover and
engage with these brands via an app
that would reward them with points and
special offers each time they purchased
from these brands.

Merryfield knew that to succeed they
needed to distinguish themselves from
the existing loyalty apps, most of which
were cluttered and transactional.
Instead, Merryfield wanted a beautiful,
easy-to-use app with engaging
animations, and clean design – the
perfect showcase for getting this new
type of brand on board. The app would
require significant native functionality  
to support receipt scanning.

9

https://www.whitespectre.com/work/a-rewards-app-for-better-for-you-products/
https://www.whitespectre.com/work/a-rewards-app-for-better-for-you-products/

By early 2021, Merryfield had new
decisions to make. Business goals
change over time, and over the course
of 2.5 years, our client now has a vast
selection of brands on a highly-rated
app, so expanding the user base was
the top priority. The Android audience
was an obvious next win.

And naturally, we needed to ensure
that the Android app would meet the
same high level of standards as the iOS
app – complete with an appealing UI,
UX, animations, flawless performance,
and of course, stability.

Key considerations for us as their tech
partner were the selection of a
development framework for the
Android app that aligned with
efficiency, maintenance costs, and time-
to-market advantages and the evolved
state of React Native, assessing its

ability to deliver the required user
experience level:

For Merryfield to grow, we absolutely needed to launch Android to cover the market. The
natural, organic channel is fragmented. These brands need a way to directly reach their
consumers and tell their story, so offering that central solution is even more critical.”

Jennie Aleckson
Co-Founder, Head of Digital Product, Merryfield

Which programming framework
should Merryfield go with for the  
new app – native Android, React
Native, or something else?

How would their choice impact  
the effort to maintain the two apps  
in parallel? Specifically – did the
introduction of Android give us the
opportunity to move the product
toward a single codebase and all the
benefits that could bring i.e. efficiency,
lower maintenance costs and faster
time to market?

Had React Native's capabilities
evolved enough over the past 2.5
years, to give us confidence that  
a React Native app would offer  
the level of UX we needed?

10

The Evolution of Business Goals and Technology

Migrating to React Native

Key Roles

The Whitespectre managed delivery
team, instrumental in bringing this
vision to life, was thoughtfully composed
to cover all critical aspects of app
development:

UI/UX Designer

Focused on ensuring the app's visual
and interaction design met high usability
standards and provided a seamless
experience across both platforms.

React Native Tech Lead

Provided technical direction, ensuring
the application's architecture was robust,
scalable, and leveraged React Native's
strengths to the fullest.

React Native Engineers

Tasked with executing the development
plan, these engineers transformed
designs and specifications into a
functional, high-quality app.

QA Engineer

Ensured the app met all quality
standards, conducting thorough testing
to identify and resolve any issues before
release.

Product Manager

Acted as the project's leader, aligning
business goals with development efforts
and ensuring the project stayed on track
to meet its objectives.

11

REACT NATIVE FOR ENTERPRISE

The Process

The React Native Android app
development and iOS app migration
project was broken down into 4 key
phases:

Phase 1: Building the Android
app on React Native 
The initial phase focused on developing
the Android version of the app, ensuring
that the core functionalities and user
experience were on par with the iOS
version, despite the platform differences.

Phase 2: Continue Releasing to
Get to Full Feature Parity 
Once the Android app was live, the team
worked to ensure that any new features
or updates were simultaneously
developed for both platforms,
maintaining consistency and feature
parity.

Phase 3: Migrating the iOS app to
React Native 
The migration of the iOS app to React
Native was a significant undertaking. It
involved re-architecting the app to not
only match the existing functionality and
performance but also to leverage the
benefits of a unified codebase.

12

Phase 4: Transitioning to
Simultaneous Development  
Under a Single Codebase 
The final phase marked the transition  
to a single codebase for both platforms,
significantly streamlining the
development process, making
maintenance more manageable, and
facilitating quicker updates and feature
rollouts.

From Roadmap to Reality:  
The Process Designet to Deliver  
We kicked off the project with an  
8-week inception phase. This deep
foundational work we put in at the
beginning – to align on business goals,
key success metrics, and a high-level
approach – was key to ensure success  
of Merryfield’s React Native Android app
development and iOS app migration.

The important conversations we had
during the inception phase with the
Merryfield team enabled us to:

Maximize the efficiency and
effectiveness of our tech team, and
the process for all stakeholders.

Significantly reduce the chance  
of wasted work, unnecessary  
burn, and delay.

Inception phase deliverables included:

Mapping out screens and user flows
and the shared nomenclature
between projects.

Identifying Android UI requirements
and the working process going
forward.

Breaking down epics into stories  
and creating estimates.

Aligning on the roadmap and building
an execution plan.

Tech investigations for Microblink/
native Android components.

We began building the Android app  
on React Native by meticulously
replicating the existing iOS native app,
only deviating where appropriate per
Google’s Material Design guidelines.

Once complete and in users' hands, we
commenced the ‘consolidation’ phase
where we adapted the experience of  
the app in React Native for iOS users,
replicating the existing UX and UI
exactly. Both apps work, look and feel
the exact same way.

Once consolidated, we drove forward
efficiently by developing new features
on the single codebase.

13

Microblink/native

Outcomes

The strategic decision to migrate
Merryfield's app to a unified React
Native codebase had profound
implications:

Unified User Experience

Users on both iOS and Android
platforms now enjoy a seamless and
consistent experience, strengthening
brand loyalty and user satisfaction.

Reduced Development and
Maintenance Costs

The single codebase approach has
significantly cut down development time
and costs, as updates and features now
require less time to implement across
platforms.

Agility in Feature Development
and Market Responsiveness

With a more efficient development
process, Merryfield can now respond
more swiftly to market trends and user
feedback, maintaining a competitive
edge in the loyalty platform market.

Expanded User Base

By extending the app's availability  
to Android, alongside improving  
the overall app quality, Merryfield
successfully broadened its reach  
and attracted a larger segment of  
users interested in healthy lifestyle
choices, significantly increasing its  
user base, and consequently making  
it even more attractive to potential  
brand partners on the B2B side.

14

1. Inception time pays off

Don’t underestimate the power of a
thorough inception phase for a migration
project. It’s the groundwork that will
ensure your team takes steady steps to
success. Starting your migration project
with a well-thought-out inception phase
is crucial for laying a solid foundation,
aligning your team's understanding of
the project's goals, scope, and
constraints. It's an investment that
prepares your team for a confident
approach to the migration, ensuring that
every step taken is in the right direction.

2. Do your homework to understand
the must-keep native features on 
your app

Gather all the background needed on
your app in terms of functionality and  
UI elements. Every bit of information
matters when adjusting for iOS and/or
Android. Understanding the intricacies  
of your current app, especially the native
features essential to its functionality  
and user experience, is critical. Audit
your app's functionality, UI elements,
and user interactions. This deep dive  
will equip you to make informed
decisions about what needs to be
preserved, enhanced, or possibly
reimagined in the migration process.

3. Assemble a savvy team on 
cross-platform app behavior

React Native engineers are a must,  
and having native knowledge is a plus.
Your UI/UX team needs to be experts  
on Material Design and Human Interface
guidelines and where the crossover
points exist. The composition of your
team can significantly impact the
outcome of your migration project, and
this cross-functional expertise is pivotal
for tackling platform-specific challenges
and ensuring a cohesive and seamless
app experience.

15

Five Essential React Native Migration Tips &
Learnings for Tech and Product Leaders

4. Maintain the two platform lenses all
the way

Your team needs to keep in mind that
your app must work for both platforms,
and adjust each and every requirement
you define based on that perspective.
Keeping the dual nature of your project
in mind is key throughout the migration
process. Every decision, from feature
development to UI adjustments, should
be evaluated through the lens of both
iOS and Android platforms. This holistic
approach ensures that the end product
performs flawlessly and resonates well
with users on both platforms,
maintaining a balance between
platform-specific expectations and  
a unified app identity.

5. Master your roadmapping skills

The thinking around the app’s feature
parity, the app’s consolidation, and
setting up a realistic timeline are the
foundations of successful execution and
delivery. This strategic foresight enables
you to set achievable milestones,
manage expectations, and guide your
team through the complexities of the
migration with clarity and purpose.

16

The Next Steps to Success
In 2024, React Native is poised for
greater heights with Fabric and
TurboModules – new, faster, and more
reliable architecture enhancements
already on the horizon. Supported by
increased investments from Meta and an
ever-expanding global developer
community, React Native's role as a
leading cross-platform framework is
further solidified. This evolution ensures
enhanced cross-platform stability and
streamlined development, enabling a
truly unified user experience.

Both startups and established
enterprises managing legacy
applications will benefit from the faster
customization and delivery that these
upcoming improvements enable.
Products stand to gain from faster
feature development and iteration
cycles, more efficient testing protocols,
and significantly reduced time-to-
market.

Recap: The Foundation for a
Successful Migration

Product Alignment:

Assess whether React Native aligns with
your product's requirements and future
roadmap. The framework's evolving
capabilities make it an increasingly
compelling choice for a wide range of
applications, beyond the simplest
content apps to more complex
platforms.

Assembling the Right Team:

The success of your migration largely
depends on the expertise and insight of
your team. Ensure you have access to
skilled React Native developers,
experienced UI/UX designers familiar
with cross-platform considerations, and
a project management team capable of
navigating the complexities of the
migration process.

The ongoing evolution of React Native
offers businesses the opportunity to
streamline app development, enhance
user experience, and accelerate market
response. Transitioning to a unified
React Native codebase can unlock
efficiency and innovation, positioning
your product for success. If you have the
right fit, strategy, and team, the benefits
are too good to miss. Whitespectre can
support you along the way.

Strategic Migration Plan:

Develop a clear, well-thought-out
migration strategy. This plan should
consider your current app's architecture,
the specific needs of your user base, and
how to leverage React Native’s
strengths to meet those needs
effectively.

17

About Whitespectre
Whitespectre is a full-service agile
development company and a long-term
partner of choice for companies of all
sizes – from high-growth startups to
$1B enterprise players. Founded in
2013, we’ve helped our client partners
within the US and Europe deliver
innovative software that rapidly scales
businesses, accelerates growth, and
delights millions of users.

Whitespectre's core offering is managed
delivery teams. Our engineers, designers,
and product managers operate as agile
partners for our clients, bringing deep

expertise while covering software
delivery needs end-to-end. As a
company, we specialize in large-scale
platform development as well as creating
best-in-class native mobile and web
applications, for both consumer-centric
and B2B businesses. As strategic
partners for our clients, we provide
executive tech advisory and additional
consulting services across product
management, UI/UX, and technical
architecture design.

Learn more at whitespectre.com

18

https://www.whitespectre.com/

